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1. INTRODUCTION AND STATEMENT OF RESULTS

Let qn(x) be a polynomial of degree n. The weB-known inequality of
Markov states that

I/q~(x)IILoo[-I,I] ~ n
2

1Iqn(x)IIL ooI_I, I]

(cf. Timan [1, p. 218]). It is natural to conjecture that similar inequalities
may hold for weighted polynomials on unbounded intervals, and indeed
Milne [2 J obtained a result which by a trivial change of variable is
equivalent to the following inequality:

where K I is a constant independent of n and of qn(x). Almost 40 years after
the publication of Milne's paper, G. Freud showed that for 1~p ~ 00,

Ilexp(-x2/2) q~(x)IILp(-OO.OO)~ K 2n 1/2llexp(-x 2/2) qn(x)IILp(-OO,OO) (2)

(cf. [3, Theorem 1], and

(cf. [3, Lemma 1D. Using (3), he also showed that

I/x exp(-x2j2) qn(X)I/L
1
1-OO.OO) ~ K4nI/2I/exp(-x2j2) qnCx)IIL11-OO,OO) (4)

(cf. [3; Lemma 2]).

* The author is grateful to S. Kwapien and the referee for their very helpful comments.
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It is easy to show that (2) and (4) imply (1); thus Freud's research can be
considered to be a generalization of Milne's, although the former was
apparently unaware of the work of the latter.

The purpose of this paper is to prove the following propositions:

THEOREM 1. (a) Let 0 < r < 00, I ~p ~ 00, and assume that n > 0 is
an integer. Then there is a constant a, independent of n, such that

(b) The above inequality is optimal in the sense that the constant a
cannot be replaced by a sequence {A n} that converges to zero as n tends to
infinity.

THEOREM 2. (a) Let s > 0 and n > 0 be integers, and assume that
1~p ~ 00. Then there is a constant b, independent of n, such that

(b) The above inequality is optimal (in the sense of Theorem 1(b».

THEOREM 3. Let 1 ~P,Pl ~ 00, and assume that n > 0 is an integer.
Then there is a constant c, independent of n, p, and PI' such that

II exp(_x2/2 qn(x)IIL
p

( -00,(0) ~ cn Il/(2p) -1/(2p,)1 II exp(-x 2/2) qn(x)IIL
pl

(_ 00,(0)'

(7)

THEOREM 4. Let 1~p ~ 00, and assume that n >0 is an integer. Then
there is a constant d, independent of nand p, such that

Remarks. Note that (5), (6), and (8) generalize (4), (1), and (3), whereas
(7) is similar to the results of Timan for polynomials and bounded intervals
(see [1, p. 236, and also p. 229D, The case p = 00 in Theorem 4 and some
generalizations of it are known [4,5).
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2. PROOFS
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Let w(x) = exp(-x2/2), and let II lip standfor II IILp<-oo,OO)'

Proof of Theorem l(a). We first show that if qn(x) is a polynomial of
degree n, and r is nonnegative integer, there is a constant ai' such that

(9)

Note that for r = 0, the assertion is trivial. Assume that (9) holds. Since

we have:

and the proof of the inductive step follows by applying (1) and (9) to the
first term in the right hand of the preceding inequality, and (2) and (9) to the
second term.

We now show that (9) holds if r is any positive real number. To see this,
note that for fixed n, qn' and x, In - 1/2X Ir Iw(x) qn(x)1 is a convex function of
r; it is thus readily seen that for fixed nand qn' h(r) =

n-r/211Ixl rw(x) qn(x)lloo/11 w(x) qn(x)lloo is convex on [0, 00). Thus if r> 0,
and r1 is an integer larger than r, we know that h(r) ~ max [h(O), h(r1)1, and
the conclusion follows by noting that since (9) holds for integers, h(O) and
h(r1) are numbers independent of n and of qn(x).

We now prove (5). In view of (9), it suffices to assume that 1~p < 00.

We first need to prove Theorem 4 for p < 00. From [3, p. 571, line 2] we see
that if Ixl ~ 4 yn, and 1~p < 00

(11 )

where a2 and a3 are positive and independent of n. Thus,

- 4y';;" n

f Iw(x)qn(x)IPdx+f I () ()IPd-n 4y';;" W X qn X X

~ am w(x) qix)IIIY exp(-a4 pn),

where a4 is positive and independent of nand p.
From [3, pp. 570-571, (3) and (5)1 we infer that if Ixl ~ n, then

Iw(x) qix)1 ~ asn II w(x) qn(x)lll exp(-x2/16n).
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Thus,
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f Iw(x) qn(x)IPdx ~ a~nP(/1 w(x) qn(x)IIIY JeD exp(-pxz/16n) dx
Ixl;;>n n

=a~nP(llw(x)qn(x)IIIY feD X-I [x exp(-pxZ/16n)] dx
n

~ am w(x) qn(X )111 Y a6 exp(-a7 pn),

where as, a6 , and a7 are independent of nand p. Setting ag =
max(az, aSa6 , as), and ag = min(a4 , a7 ), we conclude from the two preceding
inequalities that

(12)

From (3), dividing and multiplying by I +X Z and applying Holder's
inequality, we see that II w(x) qn(x)111 ~ nKil + 16n) II w(x) qn(x)llp. Since

we conclude from (12) that there is a constant a 10 ' independent of nand p,
such that

(13)

Assume now that r is an integer; thus xrqn(x) is a polynomial of degree
n + r, and from (13) we have

II w(x) xrqn(x)llp~ a lO lf4~ Iw(x) x rqn(x)IP dXJ lip
-4~

l
4~ JIIP

~ all nrlZ f Iw(x) qn(x)IP dx
-4~

~allnrIZllw(x)qn(x)llp,

and (5) follows. We have therefore proved (5) for integral r.
To prove (5) for any r ~ 0, note that for fixed x,

[n- 1/2 IxIPJ'I Iw(x) qn(x)IP/(/lw(x) qn(x)llpY is a convex function of r; thus
also Riemann sums of this function are convex, and we infer that
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n-r/2(lllxl r W(X) qn(x)llpY/(11 W(X) qn(x)llpY is a convex function of r. The
conclusion now follows as in the proof of (9).

(b) Assume 1~p < 00, and let qn(x) = xn; thus

(1llxl r w(x) qn(x)llpY =t Ixl(r+nlPexp[-Hypx)2] dx

= 2 fD Ixl(r+nlPexp[-Hypx)2] dx

= (2/p )[(r+n)p+ 11/2 I'D U[(r+n)p-IJ/2 exp(-U) du
o

= (2/p)[(r+n)p+ll/2 rWrp +np + 1)].

Similarly, (1Iw(x)qn(x)llpY=(2/p)(np+l)/2r[!(np+ I)]. Applying now
Stirling's formula (cf. Lebedev [6, p. 12 (1.4.25)]), we see that
<IIIxl r w(x) qn(x)llp)P ~ a 12 nrp/2(1I w(x) qn(x)llpY, and the conclusion follows.
To prove the asertion for p = 00, we use elementary calculus to conclude
that Illx r w(x) qn(x)lloo = exp[-!(n + r)](n + r)(n+r)/2, and II w(x) qnlloo =
exp[-(~) n] nn/2, whence the conclusion readily follows. Q.E.D.

Proof of Theorem 2. (a) Assume first that p = 00. We proceed by
induction. For s = I, (6) reduces to (I). Assume that (6) holds; applying
(10), then (6), and finally (I), we obtain:

II [w(x) qn(x)] (s+ I) 1100 = II [w(x)(q~(x) - xqn(x»] (s) 1100

~ ben + I)S/211 w(x)[q~(x) - xqn(x)]lloo = ben + I)s/211[w(x) qn(x)]'II""

~ bK,(n + ly(2 n l
/

2 11 w(x) qn(x)lloo ~ bl n(S+ 1)(211 w(x) qn(x)II"""

and the conclusion follows.
Assume now that I ~p < 00. We again proceed by induction. The

assertion is trivial for s = O. Assume that (6) holds. Applying (10), (6), (2),
and finally (4), we have:

II [w(x) qn(x)](S+I) lip ~ II[w(x) q~(x)](S) lip + II [xw(x) qn(x)](S) lip
~ bns/2 11 w(x) q~(x)llp + ben + 1y(2 Ilxw(x) qn(x)ll p

~ bK2n(s+ 1)/211 w(x) qn(x)llp+b2ns/2Ilxw(x) qn(x)llp

~ b] n(s+ 1)(2 II w(x) qn(x)llp+b2K 4 n(s + 1)/2 II w(x) qn(x)llp,

and the conclusion follows.
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(b) From the Rodrigues formula (cf. Szeg6 [7, p.106, (5.5.3)]) and
the chain rule, we readily infer that

Thus,

[w(x) H n(xlv'2)j<S) = (-IY 2n/2 [w(x)](n+s)

= (_I)S 2- S!2 w(x) H n+s(xlvt'2).

From [4; p. 94 Exercise 6], we see by a change of variable that

(14)

and

Thus from (14) we see that

combining (15) and (16) and applying Stirling's formula, we conclude that

t I[w(x) H n(xlvt'2)](S) 1

2 dx>b3 nst Iw(x) H n(xlvt'2t dx,

i.e.,

We have therefore proved the assertion for p = 2. To prove the assertion
for all values of p > 1, we shall use the Riesz-Thorin interpolation theorem
(cf. Zygmund [8, Vol. II, p.95]; this method is briefly outlined in [3,
p. 572]). Let Vn(f; t) be defined as in Freud [9, p. 371, (7)]. As remarked in
that paper, if y= [nI2], and if f(x) is a polynomial of degree y, then
Vn(f; t) =f(t) identically.

From [9, p. 371, (8) and (9)], and the Riesz-Thorin theorem, we readily
infer that for all p such that 1~p~ 00, and every functionf(x) such that
w(x)f(x) is p-integrable,

II w(x) Vn(f; x)ll p ~ bsll w(x)f(x)ll p ' (18)
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Assume now that for some sand P there is a sequence Mn' converging to
zero, such that for every polynomial qn(x) of degree n,

( 19)

Define the linear operator Tn.s(j) by

Let M~ = bsMn; applying (19) and then (18) we have

II Tn.s(f)ll p = II [w(x) Vzn(f; x) ](S)llp ~ M zn(2ny/z II w(x) Vzn(f; x)ll p

~ M~n(2ny/211 w(x)f(x)ll p ' (20)

If P > 2, let us choose a number q from the interval (1,2), whereas if P < 2,
let q> 2; in either case, ~ = ()p-l + (1 - ()) q-l, where 0 < () < 1. From (6)
and (18),

II Tn.s(f)ll q = II [w(x) Vzn(f; x)] (s) Ilq ~ b(2ny/211 w(x) Vzn(f; x)llq

~ b6(2ny/zll w(x)f(x)llq • (21)

Applying (20), (21), and the Riesz-Thorin theorem, we thus conclude that
II Tn,s(f)llz ~ b~-1J(2ny/Z(M~n)1J II w(x)f(x)llz, for every function f(x) such
that w(x)f(x) is square-integrable. In particular,

II[w(x) H n(x/V2)](S) liz = II Tn•r [Hn(x/V2)]llz

~ b~ -1J(2ny/2(M~n)1J II w(x) H n(x/V2)llz.

Since (M~n)1J converges to zero as n ---> 00 this contradicts (17), and the
conclusion follows. Q.E.D.

Proof of Theorem 3. Assume that p <PI < 00. Applying P6lya and
Szeg6 [10, p. 65, Problem 711, with

we see that

i.e.,
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Since clearly
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(22)

the conclusion readily folows from (13). If PI = 00, the conclusion follows
from (22) and (13) by noting that

[
4v1n Jl/r

lim J Iw(x) qn(x)lr = sup Iw(x) qn(x)l,
r~oo -4.jn

where the supremum is taken on [-4 /Ii, 4 /Ii] (cf. e.g., Cotlar and Cignoli
[11, p. 286, Lemma 1.2.3 D.

The remainder of the proof is carried out by adapting an argument of
Timan (cf. [1, p. 236D.

Assume PI <P = 00. Let Xo be such that II w(x) qn(x)lloo = Iw(xo) qn(xo)l·
Applying the mean value theorem and (6) we have:

Iw(xo) qn(xo)I-1 w(x) qn(x)1 ~ Iw(x) qn(x) - w(xo) qn(xo)1

~ Ix - xolll[w(x) qn(x)]'lloo ~ bn l/2 1x - xolll w(x) qn(x)lloo'

In view of the definition of xo' it is therefore clear that for all real x

Assume, e.g., that x > xo' and let bn = X o+ (bn 1/
2

) - I; then

Raising both terms of (23) to the PI th power and integrating, we thus
conclude that

whence

i.e.,

where the constant c is independent of nand PI'
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If PI <P < 00, we have

(II w(x) qix)llpY =LIw(x) qn(x)IP dx

=f Iw(x) qn(x)IP, Iw(x) qn(x)IP-PI dx
R

~ (II W(X) qn(x)llooY-PI(11 w(x) qn(x)llp)P',

i.e.,

Thus

145

(II w(x) qn(x)llpY ~ (cn l
/(2PI) II W(X) qn(x)llp)P-PI(11 w(x) qn(x)llp)Pl,

whence the conclusion readily follows. Q.E.D.

Proof of Theorem 4. For P < 00, the conclusion follows from (13).
Assume therefore that P = 00, and select a >0 and r, 1 < r < 00, arbitrarily.
Since clearly

we infer from (13) that

Since alO does not depend on r, making r --+ 00 we see that

and the conclusion follows by noting that

Q.E.D.

Remark. After writing this paper the author discovered that another
proof of Theorem 2(a), with a more general weight function, was obtained by
G. Freud in [12, p. 129, Theorem 2]. As part of a forthcoming article the
autor will include the generalization of results of this paper, for Freud's
weight function.
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